3.716 \(\int \frac{\sqrt{d+e x}}{(f+g x)^{3/2} \sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=61 \[ \frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{f+g x} (c d f-a e g)} \]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[f + g*x])

________________________________________________________________________________________

Rubi [A]  time = 0.0652654, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 48, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.021, Rules used = {860} \[ \frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{f+g x} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/((f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[f + g*x])

Rule 860

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e
 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && EqQ[m - n - 2, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x}}{(f+g x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(c d f-a e g) \sqrt{d+e x} \sqrt{f+g x}}\\ \end{align*}

Mathematica [A]  time = 0.0342655, size = 50, normalized size = 0.82 \[ \frac{2 \sqrt{(d+e x) (a e+c d x)}}{\sqrt{d+e x} \sqrt{f+g x} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/((f + g*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)])/((c*d*f - a*e*g)*Sqrt[d + e*x]*Sqrt[f + g*x])

________________________________________________________________________________________

Maple [A]  time = 0.057, size = 63, normalized size = 1. \begin{align*} -2\,{\frac{ \left ( cdx+ae \right ) \sqrt{ex+d}}{\sqrt{gx+f} \left ( aeg-cdf \right ) \sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

-2*(c*d*x+a*e)/(g*x+f)^(1/2)/(a*e*g-c*d*f)*(e*x+d)^(1/2)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (g x + f\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^(3/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.70672, size = 242, normalized size = 3.97 \begin{align*} \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d} \sqrt{g x + f}}{c d^{2} f^{2} - a d e f g +{\left (c d e f g - a e^{2} g^{2}\right )} x^{2} +{\left (c d e f^{2} - a d e g^{2} +{\left (c d^{2} - a e^{2}\right )} f g\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)/(c*d^2*f^2 - a*d*e*f*g + (c*d*e*f*g
- a*e^2*g^2)*x^2 + (c*d*e*f^2 - a*d*e*g^2 + (c*d^2 - a*e^2)*f*g)*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d + e x}}{\sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (f + g x\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(g*x+f)**(3/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/(sqrt((d + e*x)*(a*e + c*d*x))*(f + g*x)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x + d}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (g x + f\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^(3/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^(3/2)), x)